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FLOW OF A NON-NEWTONIAN LIQUID IN THE GAP BETWEEN A ROTATING 

CYLINDER AND A PERMEABLE SURFACE WITH ROTOR GRANULATION 

V. M. Shapovalov, B. D. Vekhter, 
and N. V. Tyabin 

UDC 532.516 

The isothermal process of rotor granulation of a material having the properties of 
an anomalously viscous liquid is analyzed hydrodynamically. 

One of the highly promising methods for processing of highly viscous media is rotor granu- 
lation. Rotor machines which combine the functions of a pump and a forming device are charac- 
terized by minimum deformation of the material being processed and permit granulation of high- 
ly filled heterogeneous systems. Rotor-type granulators are widely used for processing of 
pastelike materials, suspensions, and polymers in the pharmaceutical, food, and metallurgical 
industries, for production of plastics and rubber parts, in mineral fractionation, and a num- 
ber of other chemical technology processes [i]. 

The available theoretical studies of material flow in granulators [1-3] contain inaccur- 
acies in formulation of the boundary problem. Thus, for example, their authors assume that 
flow terminates in a minimal gap and that excess pressure is equal to zero. This corresponds 
to the Ardichvili concept for a roller process in which the flow occurs at zero matrix perme- 
ability [4]. 

The present study will attempt a hydrodynamic analysis of flow of a non-Newtonian (power- 
law) liquid in a rotor granulator corresponding to the Gaskell concept for roller processes 
[4, 5]. 

Formulation of the Problem. A diagram of the flow is shown in Fig. i. The mass to be 
processed is fed into the working cavity between the rotor and matrix, is held by those parts 
and forced through the perforated matrix. In the general case the peripheral velocity of the 
roller U may not be equal to the translational velocity of the matrix W. We assume that the 
flow is two-dimensional, laminar, and steady-state. The medium is incompressible. Compared 
to viscous forces, inertial and mass forces are negligibly small. Commencing from the con- 
tinuity equation we have v x ~ U + W, v ~ (U + W)h/L, L >> h, where L and h are the charac- 
teristic lengths along the x- and y-ax~s. Evaluation of the terms of the equations of motion 
yields ~Vx/~X ~ (U + W)/L, ~Vx/~y ~ (U + W)/h, 8Vv/~X ~ (U + W).h/L 2. We take ~P/~y = 0, 
i.e., P = P(x). There is no slippage on the working surfaces. The matrix permeability does 
not depend on its velocity of motion and is characterized by an empirical dependence [i, 2] 
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""uIHHUUi H . 
Fig. i. Diagram of granulation process: 
i) roller; 2) material being processed; 3) 
perforated matrix; 4) granulate, 

y = 0, v. =--KP*/n, where K is an experimentally determined constant (which depends on the 
rheologi6al properties of the medium and the geometry of the perforations). 

Material flow in the working gap is described by the equations 

dP _ OTxv 
dx Oy 

av_.__5__~q. 0% --0, 
Ox Oy 

I Ov~ F-' av~ 
T ~ u = : ~  ---@y Oy '" 

y=O, v~=W, v v = - K P  1/~, 

(1) 

(2 )  

(3) 

(4) 

X 
y = h , v ~ = U ,  v v = U  R ' (5) 

X --  Xo, P = O, (6 )  

According to Eq. 

dP 
X = Xl, P= =0 (7) 

dx 

Condition (5) is obtained with the assumption that the velocity components on the roller 
surface Vy = U sin a = Ux/R, v x = U cos a Z U. The points xo and x, characterize the bound- 
aries of the flow zone. 

The problem of Eqs. (1)-(7) is underdefined, since for three of the unknown functions 
P(x), v (x, y), v2. (x, y) we ha~e only the two equations (i) and (2) [5, p. 234]. The coordin- 
ate x,,~being an ~ priori parameter of the problem uniquely defines the coordinate of the 
point x, and the unknown functions. 

Integrating Eq. (2) over the region bounded by the sections x and x, and the lines y = 0 
and y = h(x), we obtain an integral continuity equation 

h(xD h x~" 

o 5 ;~ 
h 

(8), the volume flow rate for a roller of unit width ~ v~dy in an arbitrary 
0 

xt 

section x is equal to the sum of the granulate flow rate K [ pm/n dx over the portion from x 
x 

to xz and the flow rate at the output 
h(xO 

v~ (xO @ �9 
0 
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Integrating Eq. (i) over y, we obtain an expression for the tangential stress 

dP 
= - -  ~ + cl (x). 

~xv -- dx 
(9) 

It follows from simultaneous consideration of Eqs. (3) and (9) that 

av~ I_!1 dP .+. c__[_~ 1/"sig ( dP ) 
o---7-= n + " ( i0 )  

The further solution of the problem depends on the ratio of the working surface velo- 

cities U and W. 

Equality of Working Surface Velocities. 
metry" of the velocity profile 

h g= 
2 

In the absence of friction (U = W) we have "sym- 

av~ = o .  (11) 
' ~0g 

With consideration of Eq. (ii), Eq. (i0) takes on the form 

Ovx 1 dP h Oy =] ~ dx (t't----2-)ll/nsign[--~-x ( 9 - - + ) ]  " 

For h we take a parabolic approximation [5] 
X z 

h = H o +  
2R 

We i n t r o d u c e  t h e  d i m e n s i o n l e s s  v a r i a b l e s  a n d  p a r a m e t e r s  

X X o X 1 

P =  V 2 - ~ o  ' p~  -V2-~.  ~ =  ' -Vg>,no 

~= . PH'~ +' K ]/2~o ( . ]/2--~o ),In 
C v  ~ V 2 - ~ ;  ' r - H~ Ho ' 

v , ~ =  - - ,  u y = ___[_Y = 
h H o ( 1 - i - 9  z) !WHo f--  W 

(12) 

(13) 

(14) 

Integrating Eq. (12) with consideration of Eqs. (4), (5), (13), (14), we obtain an ex- 
pression for the velocity components 

n+1 

vx = 1 + A ( l l - - 2 Y I  = - -  1), (15)  
W 

where 
n+l 

A - -  s ign . 
(P) = n~+ 1 2 , d9 I \ d.o / 

For A(po) > i there is a stagnation point [5] in the flow zone, at which v = 0. 
X 

Substituting Eq. (15) in Eq. (8) with consideration of Eq. (14) and Vx(X~) = W. We ob- 
tain a nonlinear first order integrodifferential equation for the dimensionless pressure 

n i (l+p2)2n+~ dfi [~/n ( d ~  ig. t+r I >,Jndp=o. 
%2_ p2 q_ 2 (2n q- 1) 2 dp ~ / .  

(16) 

Boundary conditions (6), ( 7 )  for the dimensionless pressure and unknown parameters 0o 
and A have the form 

p=pd,  fi=o, p -  z, ? 
dfi 

o. (17) 
d9 

Numerical analysis of Eqs. (16), (17) was performed by Euler's method, beginning at the 
point 0 = A, which avoids use of the firing method [i, 3] used traditionally for this problem. 
In finite differences Eq. (16) has the form 
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e m + l  = e m  
2A9 2 (2n + 1)lp~ --  ~.2--Flml sign (p~_;~z __ F/m), 

(1 + O") 2"+x n (18) 

where P 
m 

= % -- Apm; the integral Im = ~ P1/"dp is defined by the trapezoid formula: 

Om 

~I/n I m + t = I m +  (19) 

The initial conditions for_system (18), (19) has the form: m = 0, O m = A, I m = 0, Pm = 
0. Calculations are halted at Pm+* < 0. Results of the analysis of Eqs. (18), (19) are 
shown in Fig. 2. Calculations were ~performed with a step Ap = 5"10 -a for ~ = 0.3. It is 
evident from the figure that to produce an identical thickness of processed material on the 
matrix (l = const) the extent of the flow zone (po -- A) for a pseudoplastic liquid must be 
larger than for a Newtonian or dilatant liquid. With increase in matrix permeability the size 
of the flow zone grows and pressure increases. The calculated curves correspond qualitatively 
to the experimental results of Sigaev [i]. 

Using the permeability condition we can define the granulate output 

X 1 X1 

Q = b S Ivv(y= O)Idx= OK J" P'/ndx, 
X o Xo 

or with consideration of Eq. (14) 

bHoW - -  r S ~l/ndp" 
Po 

(20) 

The tensile force is defined by the integral 

X; 

F = b S Pdx, 
Xo 

or with consideration of Eq. (14), 

2bR  = 3 ><o. 
Po 

(21) 

The power expended in displacement of the matrix and rotation of the roller is found from 

the i n t e g r a l  
X I  

Xo 

Considering Eqs. (3), (12), (14), we can write 

NH~ 
= b~] , /2~o  W n+l = --2 .! Ppdp. (22) 

Po 

Using the equation for the flow function v x = a~/ay and Eq. (15), and taking the boundary 
condition on the roller surface Y = i, ~ = 1 + A u, we can find an expression for the flow 
func t ion: 

2n+1 

{ An [ l + l l - - 2 r l  n sign (1--  2Y)] + (1--  A) (1--  Y)}. (23) CF= I+ ;~2 - - (1+P2)  2 ( 2 n +  1) 

The line ~ = 0 passes through the point p = A, Y = 0 and divides the entire flow region 
into a region of particle trajectories passing through the matrix_(~ < 0), and a region of 
liquid particle trajectories which remain on the matrix surface (~ > 0), as shown in Fig. i. 
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o 
p -f5 -~,o -o,5 o 

Fig. 2. Dimensionless pressures: a) 
r = 0.2; b) r = 0; i) n = 0.2; 2) i; 
3) 2. 

Differing Working Surface Velocities. In the presence of friction (f r I) the expres- 
sion for the velocity v x obtained by integrating Eq. (i0) with consideration of condition (4) 
has the form 

I h '+~  dP 1/n ( d P  ~ [  /~ v:r = W -Jr- sign IY - -  CI ~ sign (Y --  C) dY, ( 2 4 )  
dx k dx 1o 

where 
dx I 

point of maximum velocity OVx(Y = C)/aY = 0 (see Fig. i). 

Performing the integration in Eq. (24), we find 

n + l  n + I  

Using condition (5) for gq. (25) and transforming to the dimensionless variables of Eq. (14), 
we obtain 

"+'i a> :,,, ( 
n B( I -Sp2)  '~ sign 

[ 1 --  n - 4 - ~  dp \ do / (26) 

C=_Cl/(h dP ~ . The function C(x)characterizes the dimensionless ordinate of the 

n+__ ! n+l 
w h e r e  B = l1 - -  C[ n _ ] C [  n . 

Equation (26) allows elimination of the pressure gradient from Eq. 

n + l  n + !  

v ~  = 1 - t - B  -I  (f - -  !) (IY - CI n __lC 1 . ). 
W 

( 7 ) :  

(25) 

(27) 

The axial velocity profile at the output is given by solution of Eq. (I0) with condition 

U--W 
vx(xl) = W + h(xl) ( 2 8 )  

where h(x,) = Ho(l + X a ) .  

Substituting Eqs. (27), (28) in Eq. (8) and considering Eqs. (13), (14), we obtain 

where ~ _ n 
2n - t -  1 

s 

0,5 ( i  4- f) (1 -t-- k2) - -  (I ,-p- 0 2) [1 -t- (f - -  1) r -l-- P .~ -P~/'~ dp = O, 
P 

2 n +  I 

B -I lCl--; c-- --l C- I[ ~ sign(C--I) - The function ~(C) 
n 

(29) 

has two 
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Fig. 3. Function C vs friction: i) 
f > i; 2) f < i, 

asymptotes, C = 0.5 and # = 0.5 with no extreme or inflection points. For --~ < C < 0.5 the 
function decreases from 0.5 to -- =, while for 0.5 < C < + = it decreases from +~ to 0.5. 

Thus, for the two unknown functions C and P we have the system of Eqs. (26), (29) and 
boundary conditions (17). 

In the particular case n = i, # = (1 -- 3 C)/3(1 -- 2 C) and we can eliminate C from the 
system (26), (29), obtaining for the dimeneionless pressure the equation 

1 d> 
0,5 (f + - 0 2) + (i + + r .! = o. (3o) 

P 

Analysis of Eq. (30) reveals that with increase in friction the size of the flow zone and 
maximum pressure value increase. Moreover the granulate output increases and the point of 
maximum pressure (in the notation of Fig. I) shifts leftward. 

The character of the change in C as a function of friction is illustrated by Fig. 3. It 
is evident from the figure that at f < 1 (f > l) the function C increases (decreases) from 
C > 0.5 (C < 0.5) to +~ (--~), suffers an infinite discontinuity at the point 0, changing 
from --= to --= (from + ~ to +~) through a maximum (minimum) at which C < 0.5 (C > 0.5). 

At the stagnation point the condition v x = 0, Y = C is satisfied and from Eq. (27) for 

C we have C,=I/(1+f n+l ) . Consequently, liquid circulation at the input occurs at C(po) < 
C, for f < 1 or C(po) > C, for f > i. 

The system of equations (26), (29) can be conveniently solved numerically analogously to 
Eq. (16), beginning at the point 0 = I. The output and tensile force are determined by Eqs. 
(20), (21). The required power is determined in analogy to Eq. (21) and can be found as 

= [ (n + I)r [---  !I ]~ r IB (i ~- p2)l -n [ [ - -  C ( [ - - I )1  sign [B( / - -  I)1 do. 
,L n ]~o 

The mathematical models obtained uniquelY relate the integral parameters of the process 
(required power, tensile force, granulate output) to the dimensionless parameter %, which 
characterizes the thickness Ho (I + 12) or flow rate of, the_material at th~ output 0.5 Hob(U + 
~) (! + 12). Therefore if we represent the dependence N = N(F, %, f, n), F = F(F, %, f, n), 
Q = Q(F, %, f, n) in the form of nomograms, by specifying the value of % and knowing the other 
parameters appearing in F and f we can find N, F, and Q. 

The analysis presented here can be extended to the case of liquid flow in a curvilinear 
gap between two rotating cylinders with radii R~ and R2, one of which is solid, the other per- 
forated. The effective radius of curvature appearing in Eq. (14) is then given by the expres- 
sion R = RxR2/IR~ • Ral. The minus sign is for the case where the cylinder axes are both to 
one side of the flow zone (x-axis) while the plus sign is used when the cylinders are on op- 
posite sides of the flow zone. The cylinder axes are parallel, 
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NOTATION 

x, y, Cartesian coordinates; U, roller peripheral velocity; W, matrix translational ve- 
locity; h, current gap height; L, characteristic length of flow zone; Vx, Vy, velocity com- 
ponents; K, matrix permeability coefficient; P, ~,dimensional and dimensionless pressures; 
~, n, rheological constants; T , shear stress; R, roller radius; xo, x,, mixing zone charac- 

X 
teristic points; p, dimensionless Gaskell variable; po, ~, coordinates of flow zone bound- 
ary; F, dimensionless matrix permeability; Y, dimensionless ordinate; ~, P, dimensional and 
dimensionless flow functions; f, friction; A, a function of p; m, number of point; I(p), in- 
tegral function; Ap, step in p; Q, volume granulate output; F, tensile force; N, required 
power; C, a function of p; C,, value of function C at stagnation point; 9_,,_dim_ensionless 
coordinate of pressure maximum; ci, a function of x; ~, central angle; Q, F, N, dimensionless 
output, tensile force, and required power; b, working width of roller. 

i, 

2. 

3. 

4. 
5. 
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APPROXIMATION OF THE GENERALIZED BUCKINGHAM EQUATION 

A. S. Kondrat'ev UDC 532.135 

The generalized Buckingham equation is approximated by a quadratic function for med- 
ia describable by the Balkley-Gershel model. 

The Balkley-Gershel equation of state [i] is a quite general rheological law which des- 
cribes the behavior of various high concentration suspensions: 

du ] du ~-1 du 
T='%sign-~r  + k  ~ d r "  

For a laminar flow regime in a circular tube the relationship between volume flow rate 
and friction on the wall is defined by the generalized Buckingham equation [2] 

- -  - -  r p  + r~  . ( 1 )  Q = = R "  3n+n 1 (1--rv) '~ I +  2n-+-i (n-4-1)(2n+l)  

Use of Eq. (i) in practical calculations is difficult, since it is usually necessary to 
define the pressure drop AP in terms of the volume flow rate, i.e., AP = f(Q). 

We will approximate the auxiliary function ~1(x) by the quadratic expression ~2(x): 

( 2n 2nZ i"  - -  x "-{- X a ( 2 )  ~p~ (x) ----. (1--  x) ~+~ 1%- 2 n + l  ( n + l ) ( 2 n + l )  ' 

% (x) = (ax z + bx -+- c) t/2 _~_ d -}- ex. (3) 

It is evident that the expression ~ ~/n(x) coincides with the terms in square brackets in 
Eq. (i). 
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